98 research outputs found

    Robust and Scalable Hyperdimensional Computing With Brain-Like Neural Adaptations

    Full text link
    The Internet of Things (IoT) has facilitated many applications utilizing edge-based machine learning (ML) methods to analyze locally collected data. Unfortunately, popular ML algorithms often require intensive computations beyond the capabilities of today's IoT devices. Brain-inspired hyperdimensional computing (HDC) has been introduced to address this issue. However, existing HDCs use static encoders, requiring extremely high dimensionality and hundreds of training iterations to achieve reasonable accuracy. This results in a huge efficiency loss, severely impeding the application of HDCs in IoT systems. We observed that a main cause is that the encoding module of existing HDCs lacks the capability to utilize and adapt to information learned during training. In contrast, neurons in human brains dynamically regenerate all the time and provide more useful functionalities when learning new information. While the goal of HDC is to exploit the high-dimensionality of randomly generated base hypervectors to represent the information as a pattern of neural activity, it remains challenging for existing HDCs to support a similar behavior as brain neural regeneration. In this work, we present dynamic HDC learning frameworks that identify and regenerate undesired dimensions to provide adequate accuracy with significantly lowered dimensionalities, thereby accelerating both the training and inference.Comment: arXiv admin note: substantial text overlap with arXiv:2304.0550

    Runtime Adaptive System-on-Chip Communication Architecture

    Get PDF
    The adaptive system provides adaptivity both in the system-level and in the architecture-level. The system-level adaptation is provided using a runtime application mapping. The architecture-level adaptation is implemented by using several novel methodologies to increase the resource utilization of the underlying silicon fabric, i.e. sharing the Virtual Channel Buffers among different output ports. To achieve successful runtime adaptation, a runtime observability infrastructure is included

    BayesImposter: Bayesian Estimation Based .bss Imposter Attack on Industrial Control Systems

    Full text link
    Over the last six years, several papers used memory deduplication to trigger various security issues, such as leaking heap-address and causing bit-flip in the physical memory. The most essential requirement for successful memory deduplication is to provide identical copies of a physical page. Recent works use a brute-force approach to create identical copies of a physical page that is an inaccurate and time-consuming primitive from the attacker's perspective. Our work begins to fill this gap by providing a domain-specific structured way to duplicate a physical page in cloud settings in the context of industrial control systems (ICSs). Here, we show a new attack primitive - \textit{BayesImposter}, which points out that the attacker can duplicate the .bss section of the target control DLL file of cloud protocols using the \textit{Bayesian estimation} technique. Our approach results in less memory (i.e., 4 KB compared to GB) and time (i.e., 13 minutes compared to hours) compared to the brute-force approach used in recent works. We point out that ICSs can be expressed as state-space models; hence, the \textit{Bayesian estimation} is an ideal choice to be combined with memory deduplication for a successful attack in cloud settings. To demonstrate the strength of \textit{BayesImposter}, we create a real-world automation platform using a scaled-down automated high-bay warehouse and industrial-grade SIMATIC S7-1500 PLC from Siemens as a target ICS. We demonstrate that \textit{BayesImposter} can predictively inject false commands into the PLC that can cause possible equipment damage with machine failure in the target ICS. Moreover, we show that \textit{BayesImposter} is capable of adversarial control over the target ICS resulting in severe consequences, such as killing a person but making it looks like an accident. Therefore, we also provide countermeasures to prevent the attack

    Rampo: A CEGAR-based Integration of Binary Code Analysis and System Falsification for Cyber-Kinetic Vulnerability Detection

    Full text link
    This paper presents a novel tool, named Rampo, that can perform binary code analysis to identify cyber kinetic vulnerabilities in CPS. The tool takes as input a Signal Temporal Logic (STL) formula that describes the kinetic effect, i.e., the behavior of the physical system, that one wants to avoid. The tool then searches the possible cyber trajectories in the binary code that may lead to such physical behavior. This search integrates binary code analysis tools and hybrid systems falsification tools using a Counter-Example Guided Abstraction Refinement (CEGAR) approach. Rampo starts by analyzing the binary code to extract symbolic constraints that represent the different paths in the code. These symbolic constraints are then passed to a Satisfiability Modulo Theories (SMT) solver to extract the range of control signals that can be produced by each path in the code. The next step is to search over possible physical trajectories using a hybrid systems falsification tool that adheres to the behavior of the cyber paths and yet leads to violations of the STL formula. Since the number of cyber paths that need to be explored increases exponentially with the length of physical trajectories, we iteratively perform refinement of the cyber path constraints based on the previous falsification result and traverse the abstract path tree obtained from the control program to explore the search space of the system. To illustrate the practical utility of binary code analysis in identifying cyber kinetic vulnerabilities, we present case studies from diverse CPS domains, showcasing how they can be discovered in their control programs. Our tool could compute the same number of vulnerabilities while leading to a speedup that ranges from 3x to 98x

    Inter-Layer Scheduling Space Exploration for Multi-model Inference on Heterogeneous Chiplets

    Full text link
    To address increasing compute demand from recent multi-model workloads with heavy models like large language models, we propose to deploy heterogeneous chiplet-based multi-chip module (MCM)-based accelerators. We develop an advanced scheduling framework for heterogeneous MCM accelerators that comprehensively consider complex heterogeneity and inter-chiplet pipelining. Our experiments using our framework on GPT-2 and ResNet-50 models on a 4-chiplet system have shown upto 2.2x and 1.9x increase in throughput and energy efficiency, compared to a monolithic accelerator with an optimized output-stationary dataflow.Comment: Accepted poster abstract to the IBM IEEE AI Compute Symposium (AICS'23

    Romanus: Robust Task Offloading in Modular Multi-Sensor Autonomous Driving Systems

    Full text link
    Due to the high performance and safety requirements of self-driving applications, the complexity of modern autonomous driving systems (ADS) has been growing, instigating the need for more sophisticated hardware which could add to the energy footprint of the ADS platform. Addressing this, edge computing is poised to encompass self-driving applications, enabling the compute-intensive autonomy-related tasks to be offloaded for processing at compute-capable edge servers. Nonetheless, the intricate hardware architecture of ADS platforms, in addition to the stringent robustness demands, set forth complications for task offloading which are unique to autonomous driving. Hence, we present ROMANUSROMANUS, a methodology for robust and efficient task offloading for modular ADS platforms with multi-sensor processing pipelines. Our methodology entails two phases: (i) the introduction of efficient offloading points along the execution path of the involved deep learning models, and (ii) the implementation of a runtime solution based on Deep Reinforcement Learning to adapt the operating mode according to variations in the perceived road scene complexity, network connectivity, and server load. Experiments on the object detection use case demonstrated that our approach is 14.99% more energy-efficient than pure local execution while achieving a 77.06% reduction in risky behavior from a robust-agnostic offloading baseline.Comment: This paper has been accepted to the 2022 International Conference On Computer-Aided Design (ICCAD 2022

    DOMINO: Domain-invariant Hyperdimensional Classification for Multi-Sensor Time Series Data

    Full text link
    With the rapid evolution of the Internet of Things, many real-world applications utilize heterogeneously connected sensors to capture time-series information. Edge-based machine learning (ML) methodologies are often employed to analyze locally collected data. However, a fundamental issue across data-driven ML approaches is distribution shift. It occurs when a model is deployed on a data distribution different from what it was trained on, and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) have been proposed to capture spatial and temporal dependencies in multi-sensor time series data, requiring intensive computational resources beyond the capacity of today's edge devices. While brain-inspired hyperdimensional computing (HDC) has been introduced as a lightweight solution for edge-based learning, existing HDCs are also vulnerable to the distribution shift challenge. In this paper, we propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data. DOMINO leverages efficient and parallel matrix operations on high-dimensional space to dynamically identify and filter out domain-variant dimensions. Our evaluation on a wide range of multi-sensor time series classification tasks shows that DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 16.34x faster training and 2.89x faster inference. More importantly, DOMINO performs notably better when learning from partially labeled and highly imbalanced data, providing 10.93x higher robustness against hardware noises than SOTA DNNs

    ERUDITE: Human-in-the-Loop IoT for an Adaptive Personalized Learning System

    Full text link
    Thanks to the rapid growth in wearable technologies and recent advancement in machine learning and signal processing, monitoring complex human contexts becomes feasible, paving the way to develop human-in-the-loop IoT systems that naturally evolve to adapt to the human and environment state autonomously. Nevertheless, a central challenge in designing many of these IoT systems arises from the requirement to infer the human mental state, such as intention, stress, cognition load, or learning ability. While different human contexts can be inferred from the fusion of different sensor modalities that can correlate to a particular mental state, the human brain provides a richer sensor modality that gives us more insights into the required human context. This paper proposes ERUDITE, a human-in-the-loop IoT system for the learning environment that exploits recent wearable neurotechnology to decode brain signals. Through insights from concept learning theory, ERUDITE can infer the human state of learning and understand when human learning increases or declines. By quantifying human learning as an input sensory signal, ERUDITE can provide adequate personalized feedback to humans in a learning environment to enhance their learning experience. ERUDITE is evaluated across 1515 participants and showed that by using the brain signals as a sensor modality to infer the human learning state and providing personalized adaptation to the learning environment, the participants' learning performance increased on average by 26%26\%. Furthermore, we showed that ERUDITE can be deployed on an edge-based prototype to evaluate its practicality and scalability.Comment: It is under review in the IEEE IoT journa

    Golden Reference-Free Hardware Trojan Localization using Graph Convolutional Network

    Full text link
    The globalization of the Integrated Circuit (IC) supply chain has moved most of the design, fabrication, and testing process from a single trusted entity to various untrusted third-party entities worldwide. The risk of using untrusted third-Party Intellectual Property (3PIP) is the possibility for adversaries to insert malicious modifications known as Hardware Trojans (HTs). These HTs can compromise the integrity, deteriorate the performance, deny the service, and alter the functionality of the design. While numerous HT detection methods have been proposed in the literature, the crucial task of HT localization is overlooked. Moreover, a few existing HT localization methods have several weaknesses: reliance on a golden reference, inability to generalize for all types of HT, lack of scalability, low localization resolution, and manual feature engineering/property definition. To overcome their shortcomings, we propose a novel, golden reference-free HT localization method at the pre-silicon stage by leveraging Graph Convolutional Network (GCN). In this work, we convert the circuit design to its intrinsic data structure, graph and extract the node attributes. Afterward, the graph convolution performs automatic feature extraction for nodes to classify the nodes as Trojan or benign. Our automated approach does not burden the designer with manual code review. It locates the Trojan signals with 99.6% accuracy, 93.1% F1-score, and a false-positive rate below 0.009%.Comment: IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 202
    • …
    corecore